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Abstract
The equation of a linear oscillator with adiabatically varying eigenfrequency
ω(εt) (ε � 1 is the adiabaticity parameter) is considered. The asymptotic
solutions to the equation have been obtained to terms of order ε3. It is shown
that imaginary terms of order ε2 form a generalized geometric phase determined
by the geometry of the system’s contour in the plane (ω, ω′). The real terms of
orders ε and ε3, as predicted (Bliokh K Yu 2002 J. Math. Phys. 43 5624), do not
form geometric amplitudes but are responsible for local relationships between
the solution amplitudes and the parameters, that is, for adiabatic invariants.

PACS numbers: 03.65.Vf, 02.40.Yy, 45.30.+s, 45.20.−d, 02.30.Hq

1. Introduction

This paper develops the ideas of papers [1–3]. In particular, in [3] the notion of the generalized
geometric phase has been introduced; its real part (generalized geometric amplitude) has been
proved to be zero in Hamiltonian oscillatory systems. This fact is closely related to the strong
stability and quantizability of Hamiltonian systems. The generalized geometric phase is, in
fact, the analogue of Berry’s geometric phase or Hannay’s angle [4–7], but it is constructed,
however, not in the parameter space,but in the generalized parameter space [3], which includes
not only dimensions of parameters, but dimensions of their derivatives as well. Below, we
will give some particular examples supporting general theorems proved previously and will
demonstrate the initiation of the generalized geometric phase in a harmonic oscillator with a
slowly varying eigenfrequency.

Berry’s phase or Hannay’s angle by no means arises in every system; independent variation
of several real parameters provides the necessary condition for its initiation in the case of
ordinary linear differential equations. Conversely, the generalized geometric phase can appear
even in a very simple system (classical oscillator) under adiabatic changes of the single
parameter—oscillator eigenfrequency. Note that the latter effect corresponds to higher orders
of approximation in a small adiabaticity parameter.
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2. Basic calculations

Consider the equation for a classical linear oscillator

x ′′ + ω2(εt)x = 0 (1)

where the prime stands for differentiation with respect to time t and ε � 1 is a small adiabaticity
parameter. Variations of the real eigenfrequency ω are assumed to be finite and not closely
approaching the turning point ω = 0. Then the asymptotic solutions to equation (1) can be
constructed to an arbitrary accuracy in ε. The Neistadt method of successive diagonalizations
[3] permits this to be done and shows that these solutions can always be written in the form of
an exponential function of some complex phase1 (see also [8]). With such a representation,
the method of successive approximations for the exponent is more convenient for calculations
and will lead to the desired result. The asymptotic solutions to equation (1) with an accuracy
of ε3 are

x = x(0) exp

{∫ t

0

[
±iω − ω′

2ω
± i

3ω′2

8ω3
∓ i

ω′′

4ω2
+

3ω′3

4ω5
− 3ω′ω′′

4ω4
+

ω′′′

8ω3
+ O(ε4)

]
dτ

}
.

(2)

By substituting (2) into (1) we can easily verify that the above solution is correct.
The first term in the integrand in (2) represents a regular dynamic phase. The other

terms can be represented in geometric form. To this end, let us introduce a generalized three-
dimensional space of the parameter ω: �M = (ω, ω′, ω′′) [3]. Solutions (2) can be written
as

x = x(0) exp

{
±i

∫ t

0
ω dτ +

∫
L

�F d �M
}

+ O(ε4t). (3)

Here the second integral is taken along the trajectory L, which is the trajectory of the
representative point of the system in �M-space. The field �F( �M) is equal to

�F =
(

− 1

2ω
± i

3ω′

8ω3
+

3ω′2

4ω5
− 3ω′′

8ω4
,∓i

1

4ω2
− 3ω′

8ω4
,

1

8ω3

)
. (4)

Note that the next to the last term in the integrand in (2) could be assigned both to the
first component of the field �F through the substitution ω′ω′′ dt = ω′′ dω and to the second
component through the substitution ω′ω′′ dt = ω′ dω′. In (4), an intermediate variant has been
chosen: ω′ω′′ dt = (ω′′ dω + ω′ dω′)/2. The meaning of such a representation is discussed
below.

It is known that nonlocal terms (generalized geometric phases in solution (3)) appear
because the field �F is nonpotential [1, 3]. As for the potential part of the field, it can be
integrated to give only local dependence on current values of system parameters. To isolate
the nonpotential component of the field �F , we have to calculate its curl in �M-space. As a

1 Even pre-exponential factors arising as a result of substitution of variables in successive diagonalizations are local
values (functions) of the parameters and their derivatives and can always be transferred into the integrand to the
exponent.
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result we arrive at

(rot �F)1 = ∂F3

∂ω′ − ∂F2

∂ω′′ = 0

(rot �F)2 = ∂F1

∂ω′′ − ∂F3

∂ω
= 0 (5)

(rot �F)3 = ∂F2

∂ω
− ∂F1

∂ω′ = ± i

8ω3
.

The third curl component is nonzero, hence the field is nonpotential and the solution
will possess a generalized geometric phase. At the same time, it will not have a
generalized geometric amplitude (as predicted in [3] for oscillatory Hamiltonian systems),
since Re(rot �F) = 0. It can easily be shown that had we assigned the next to last term of the
integrand in (2) completely to the first or the second field component, the function rot �F would
have had nonzero real parts in the second and the third components. An integral of these
parts along the closed trajectory of the representative point of the system in �M-space would
be, however, identically equal to zero and they would not produce the generalized geometric
amplitudes2.

By comparing (5) with (4), we can isolate the nonpotential part of the field �F

�F (c) =
(

∓i
ω′

8ω3
, 0, 0

)
. (6)

The potential component has the form �F (p) = grad ϕ, where ϕ( �M) is the scalar potential,
which is equal, in this case

ϕ = −1

2
ln ω ∓ i

ω′

4ω2
− 3ω′2

16ω4
+

ω′′

8ω3
. (7)

Upon integrating the potential component �F (p), we obtain solution (3) in the form [3]

x = x(0) exp

{
±i

∫ t

0
ω dτ + ϕ(t) − ϕ(0) +

∫
L

�F (c) d �M
}

+ O(ε4t) (8)

or, after substituting (6) and (7) into (8), we have

x = x(0) exp

{
±i

∫ t

0
ω dτ +

[
−1

2
ln ω ∓ i

ω′

4ω2
− 3ω′2

16ω4
+

ω′′

8ω3

]∣∣∣∣∣
t

0

∓ i
∫

L

ω′

8ω3
dω

}
+ O(ε4t). (9)

The first term in (9) is the dynamic phase as before. The terms in square brackets are local
and, consequently, cannot grow infinitely. They are equal to zero under cyclic changes (when
ω and its derivative return to their initial values). The first term in the square brackets can
be represented as the pre-exponential factor

√
ω(0)/ω(εt). It is responsible for constructing

the known adiabatic invariant of the oscillator. It is readily seen that owing to this term the
value I = |x(t)|2ω(t) = const + O(ε2t) is conserved in the first approximation in ε. The next
term in the square brackets is purely imaginary and always small (of order ε); it corrects the

2 This is due to the fact that �M-space is not a regular space with independent dimensions. Its dimensions characterize
a single function (on this topic, see in [3]).
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current phase of the solutions. The two last terms in the square brackets are also always small
(of order ε2); they represent corrections to the adiabatic invariant. In a third approximation in
ε, the adiabatic invariant can be written as

I = |x|2ω exp

[
3ω′2

8ω4
− ω′′

4ω3

]
= const + O(ε4t). (10)

Now we turn to the last term in exponents (8) and (9). It is the generalized geometric
phase [3] of the oscillator

ψ =
∫

L

�F (c) d �M = ∓i
∫

L

ω′

8ω3
dω. (11)

It can be considered on the plane �m = (ω, ω′). The terms of higher orders, which cause the
dimension ω′′ to appear in previous arguments, were taken into account exclusively to show
that the real terms corresponding to these corrections do not give rise to geometric amplitudes.

For the sake of simplicity, first we consider the case of closed trajectories of the
representative point of the system in the �m-plane. According to the Stokes theorem,
the contour integral in (8) can be reduced to a surface one, i.e. to a flux of rot �F (c) through the
surface S spanned on the contour L:

ψ =
∫

S

rot �F (c)�n ds = ∓in
∫

S

1

8ω3
dω dω′ (12)

where �n is a unit normal to the directed surface S and n is equal to +1 or −1 for the contour L
directed anticlockwise or clockwise, respectively.

It is noteworthy how naturally and clearly the functional approach describes the
phenomena in question compared to the temporal approach (see [1–3]). Let us compare
solution (2) obtained with the help of the temporal approach (where the time integrals are
treated) with solutions (6)–(9) of the functional approach (the integrals, being functionals
of ω(εt), are considered in the generalized parameter space). It is unlikely that essential
and insignificant terms can be separated in the cumbersome formula (2), whereas functional
solutions (6)–(11) immediately separate nonlocal and local terms very concisely3.

3. Example

Let us take a look at the simplest case where the change in ω produces closed contours in the
plane �m = (ω, ω′): periodically varying ω(εt). Assume that

ω = ω0 + ω1 cos(εt) (13)

where ω0 > ω1 > 0. The ω(εt) dependence of this sort corresponds to an ellipse in the
�m-plane (figure 1).

Next, we calculate the generalized geometric phase (12) gained during one period of
ω(εt) or one cycle of the representative point of the system along the contour L. The contour
orientation corresponds to n = −1; the surface integral over the elliptic surface S (figure 1) is
easily reducible to a double integral

ψ0 = ±i
∫ ω0+ω1

ω0−ω1

dω

∫ ε
√

ω2
1−(ω−ω0)

2

−ε
√

ω2
1−(ω−ω0)

2

dω′
(

1

8ω3

)
. (14)

3 Note that the fact that the real terms of first, third and fifth orders in complex phase have primitives, i.e., they
are local, was obtained by explicit calculations in [8]. But there is no analysis regarding the separation of local and
nonlocal terms in the imaginary terms of second and fouth order, because this can be practically done only from the
point of view of the geometrical formalism that is used here.
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Figure 1. Oriented elliptic contour L and area S corresponding to it in the �m-plane under periodic
variations of ω(εt) (equation (13)).

The integration over ω′ and then over ω yields

ψ0 = ±i
∫ ω0+ω1

ω0−ω1

ε

√
ω2

1 − (ω − ω0)2

4ω3
dω = ± iεπ

8

ω2
1(

ω2
0 − ω2

1

)3/2 . (15)

Thus, during one period of ω(εt), the asymptotic solutions to the oscillator equation gain
a nonzero generalized geometric phase (opposite in sign for two independent solutions) in
addition to the usual dynamic phase. Let us recall that the terms in the square brackets in
equation (9) are equal to zero under cyclic evolution, and the gain of the system phase under
one-period variation ω(εt) (13) is equal to

ϕ0 = ±i
∫ 2πε−1

0
ω dτ + ψ0 = ±i

[
2πε−1ω0 +

επ

8

ω2
1(

ω2
0 − ω2

1

)3/2

]
+ O(ε4t). (16)

At large times t � ε−2, the generalized geometric phase increases infinitely, which is
a direct consequence of its nonlocality (see [1–3]). Indeed, continuous circulation along a
bounded contour can grow infinitely for a nonpotential field only. In this case, an increment
of the generalized geometric phase is approximately equal to

ψ ∼=ψ0

[
εt

2π
+ O(1)

]
. (17)

Since ψ0 ∼ ε, the asymptotic solutions (8) and (9) can be written as

x = x(0)

√
ω(0)

ω(εt)
exp

{
±i

∫ t

0
ω dτ +

εψ0

2π
t + O(ε)

}
+ O(ε4t). (18)

Note that solution (18) represents, in essence, oscillations with a varying amplitude and
an efficient (mean) frequency

ωeff = 〈ω〉t +
ε

2π
|ψ0|. (19)

Here 〈ω〉t = 1
t

∫ t

0 ω(ετ) dτ is the mean value of the current eigenfrequency. Thus, as indicated
in [1–3], geometric phases cause a shift of efficient eigenfrequencies of a system. In our case,
the efficient eigenfrequency is growing.
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4. Conclusion

In this paper, the asymptotic solutions to the equation of an adiabatic harmonic oscillator,
involving terms of order ε3, have been obtained and investigated. We have analysed the
geometric representation of solutions in a generalized parameter space, whose general theory
has been elaborated in [3]. It has been shown that the terms of order ε2 are nonlocal and
give rise to a generalized geometric phase of solutions, which is described similarly to Berry’s
phase or Hannay’s angle, but in the plane (ω, ω′). The real terms of orders ε and ε3 are local
and do not produce generalized geometric amplitudes. This result has been proved in general
form in [3] and is closely related to the strong stability and the quantizability of Hamiltonian
oscillatory systems.

We have calculated the increment of generalized geometric phase for one particular case.
The simplest periodic time dependence of the single parameter—oscillator eigenfrequency—
would suffice to give rise to this phase. In this respect, the phenomenon is less ‘exotic’
than Berry’s geometric phase or Hannay’s angle, when independent variations of several real
parameters are necessary for its initiation in the case of linear ordinary differential equations.
It has been demonstrated that owing to its nonlocality, the generalized geometric phase can
increase infinitely even under small limited variations of ω (for example, periodical). This
causes an efficient shift of the mean oscillator frequency over large times.

Note also that the asymptotic solutions obtained are applicable over times t � ε−4 as
long as the remainder term in solutions (2), (3), (8) and (9) is small. Considering that the
generalized geometric phase (16) is of order ε2t , the above expressions adequately describe
the solution behaviour up to very large values of the phase increment.

Since the equation for a harmonic oscillator is fundamental for many physical
systems, the problem discussed above is applicable both for studying mechanical oscillators
or electromagnetic contours and for analysing wave propagation in one-dimensionally
inhomogeneous media or behaviour of quantum particles in an external potential.
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